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Unified gauge theories and the gravitational cut-off 
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Fakultat fur Physik, Universitat Freiburg, Hermann-Herder-Strasse 3, Freiburg, West 
Germany 

Received 15 September 1976 

Abstract. Assuming that gravitation acts as a universal cut-off for strong, weak and 
electromagnetic interactions, we study some consequences for a class of unified gauge 
theories using the renormalization group method. 

1. Introduction 

The SU(2) x U( 1) gauge model of Salam (1968) and Weinberg (1967) seems to provide 
a fairly good description of the current state of affairs in weak and electromagnetic 
interactions (for a recent review see Lee 1975). However, it is generally felt that this 
model is only one part of a more grand scheme chosen by nature, perhaps also 
encompassing the strong interactions. 

Several such schemes have been put forward in the literature. One of their features 
is the prediction of the value of the Salam-Weinberg mixing angle, which is undeter- 
mined in the original model. However, renormalization effects can be expected to 
modify the mixing angle predictions (Georgi et a1 1974). Clearly it is important to look 
for constraints (both theoretical and experimental) to limit the number of possible 
realistic models. This leads us to the main purpose of the paper. In this note we propose 
that gravitation be used to provide one such Constraint?. That is, we assume that 
gravitation provides a universal cut-off for all other interactions. The effect of such a 
cut-off on unified gauge theories will be studied using the renormalization group (RG) 
(see Wilson 1971 for a discussion of electrodynamics in the presence of a cut-off). It will 
be seen that a fairly stringent constraint on the possible realistic models arises. 

The plan of the paper is as follows. In § 2 we discuss quantum electrodynamics in the 
presence of a gravitational cut-off using the renormalization group. In § 3 we extend 
the discussion to unified gauge models which contain the SU(2) X U(l)  model of Salam 
and Weinberg. In the calculation of the renormalization group parameters we assume 
that the gauge group of weak and electromagnetic interactions is SU(2) x U(1). We 
derive a constraint condition so that only models satisfying it need be considered. The 
renormalized value of the Salam-Weinberg mixing angle is calculable and can help in 
deciding between the various models. In § 4 we show how the constraint can be made 
more stringent when strong interactions are also taken into account. These are 
introduced via the colour SU(3), so that the overall gauge group observed at present 
energies is assumed to be SU(3), x SU(2) x U(1). 

t The idea that gravitation provides a universal cut-off for the other interactions is an old one (see, e.g., the 
talk given by A Salam at Miami in 1971 and references therein). 
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2. Electrodynamics in the presence of a gravitational cut-off 

To introduce the idea, consider electrodynamics in the presence of a gravitational 
cut-off A =  1.2 X 10” GeV. The momentum dependence of the effective electric 
coupling e(K), where K denotes the momentum scale, is given by the RG expression (for 
K >> me, the electron mass) 

For le(K)I sufficiently small, 

P(e(K)) = be3(K). (2.2) 

Equation (2.1) can then be integrated. To determine the integration constant we 
assume that e(K) remains sufficiently small up to K -A, the gravitational cut-off, where 
it takes some value e,,. We obtain 

(2.3) 

Wilson (1971) considered the possibility where e: >> (2b In A/K)-’ (without specify- 
ing a -value for A so that this can always be arranged). Then 

e z ( ~ ) = ( 2 b  In A / K ) - ’ .  (2.4) 

It is easy to see that (2.4) leads to difficulty for our case (where A is fixed). We have 

(2.5) 

where b = (127r2)-’ in lowest order of perturbation theory. Taking K = 1 GeV, say, we 
obfain 

e2/477 = 0.1 1, (2.6) 
a value much greater than the observed coupling constant a = (137)-’. Thus (2.4) is a 
bad approximation in our case and we keep equation (2.3). In fact we can estimate the 
value of e,, by using the known value of a. This gives 

&47r = (132)-’. (2.7) 
Note that this value of eA is not very significant since we have taken into account the 
contribution to p from only one type of charged particle. However, the essential point 
here is that the effective electric coupling increases as K increases. This is, of course, a 
typical feature of an Abelian gauge theory (see also the discussion following (4.7)). 

3. Extension to gauge models of weak and electromagnetic interactions 

We turn next to the unified gauge models. The SU(2) X U (  1) model of Salam and 
Weinberg is assumed to be embedded in some larger group G. The weak mixing angle is 
given by (Salam 1968, Weinberg 1967, Georgi et a1 1974) 
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where g ,  and g ,  are the coupling constants associated with SU(2)  and U (  1) respectively 
and the constant C is defined by the relation 

Q = 1 3 -  CY. (3 .2)  

sin28 = (1 + c2)-'. (3.3) 

However, since the gauge couplings are functions of the momentum scale, (3.3) is 
expected to get modified because of renormalization effects. In analogy to the Abelian 
case we can write down the following renormalization group equations for g l ( K )  and 
g 2 ( ~ )  (for Igl(K)(, I ~ , ( K ) (  sufficiently small and the boundary condition g l ( K ) ,  g , ( ~ )  + g ,  
for K -A, the gravitational cut-off): 

Now invariance under G implies that g ,  = g ,  so that 

2 g i  
g 2 ( K )  = 1 + 26,g: in(A/K j. 

The effective electric coupling is given by 

(3.5) 

We note here that for K of the order of present energies ( K  - 10-10, GeV) and much 
smaller than all superheavy masses (these include, in particular, all the gauge bosons 
apart from the W and Z bosons of the Salam-Weinberg model), a theorem proved by 
Appelquist and Carrazone (1975) shows that b2 and bl can be calculated in an effective 
field theory based on the gauge group SU(2)  X U(1)f'. This will be used shortly. 

From (3.1), (3.4), (3.5) and (3.6) one can derive the relation 

(1 + c') sin28 = 1 - 2 e 2 ( ~ ) ( b l  -b2)c2  ln(A/K) (3.7) 

which describes the effect renormalization has on the weak mixing angle 8. Note that 
for K - A  we recover (3.3) as expected. 

Next we assume, as in Georgi et a1 (1974), that the only multiplets of G that 
contribute differently to b l  and b2 are the gauge vector mesons themselves, which give 
respectively 0 and -22  (48.rr2)-' (see the discussion following (3.6)). Taking 
K = 10 GeV and e 2  =47m in (3.7) leads to the following constraint on C2 (181 # 0 or 
4 2 ) :  

0 < C2 < 2 .82 .  (3.8) 
Since C is determined by the underlying group, this is essentially a constraint on the 
unifying group G which embeds the S U ( 2 ) x U ( l )  model of Salam and Weinberg. 
Although in principle (3.8) still allows a large class of permissible unified models, the 
choice may be much more restricted when (3.7) is also taken into account. In order to 
see this we now discuss some specific models which have appeared in the literature 
(Weinberg 1972, Georgi and Glashow 1974, Fritsch and Minkowski 1975, Pati and 
Salam 1973, 1974, Elias and Swift 1975). 

t The superheavy boson masses are of the order of A,  
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3.1. SU(3)L x SU(3)R model of Weinberg 

For this case 

c 2 = 3  

which violates the constraint (3.8) and so gets ruled out as a suitable model for unifying 
the weak and electromagnetic interactions. 

3.2. SU(5) model of Georgi and Glashow 

Here C2 = 5/3. Substitution in (3.7) gives 

sin28 ~ 0 . 1 5  

which is to be compared with the group-theoretical value 3/8. This renormalization of 
8 should be taken into account when doing calculations. Experimentally one seems to 
find sin28=0.35*0.12t. 

3.3. SUL (12) X SUR (12)  model proposed by Fritsch and Minkowski 

Here C2 = 11/5 which then gives 

sin28 = 0.07 

a rather low value in view of the above remarks. 

3.4. Models based on the gauge groups SUL ( 2 n )  X SUR (2n) X SU(4), for different values 

When such groups are embedded in an appropriate universal group one obtains 
C2 = 4/3, independent of n (Pati and Salam 1973, 1974, Elias and Swift 1975). This 
gives 

of n 

sin28 = 0.23 

a value lying at the lower limit of the experimental numbers. Thus, from the point of 
view considered here, models belonging to this class are preferred. 

We finally note that the above considerations remain essentially unchanged if we 
take K = lo2 GeV instead of 10 GeV. In particular the values of sin28 considered above 
are unaffected to the two significant figures. 

4. Inclusion of strong interactions 

We now show how the constraint on C2 (equation (3.8) above) can be made more 
stringent when strong interactions are also taken into account. We assume that the 
strong interactions are caused by the interaction of colour SU(3) quark triplets and an 
octet of massless colour gluons$. When the momentum scale K is large compared with 
all ordinary masses but small compared with all superheavy masses, the K dependence 

t See, e.g., the Proceedings of the 1974 London Conference and also Lee (1976). 
$ See, e.g., the Oppenheimer Lecture given by M Gell-Mann in 1974 at Princeton. 
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of the quark-gluon coupling constant g, is governed by a renormalization group 
equation analogous to (3.4) and (3.5): 

where b3 is calculated in the field theory based on the gauge group SU(3) (Appelquist 
and Carrazone 1975). 

Next, let us assume that the fermion contribution to b3 in (4.1) arises from four 
triplets of coloured quarks (including a triplet of charmed quarks). One them obtains 
(Politzer 1974a, b) 

b3 = -25(481r2)-'. (4.2) 

(1 + C2)(gi)-' = (13.35 - 1 *4C2). 

From (3.4), (3.5) and (3.6) and the remarks following (3.7), one finds 

(4.3) 

Note that this result is representation dependent to the extent that we assume that there 
are eight S U ( 2 )  doublets (six quark doublets and e-v,, p-vP doublets). Substitution of 
(4.2) and (4.3) in (4.1) leads to the following constraint on C2 (K = 10 GeV): 

C2 < 1.54. (4.4) 

We see that this constraint is more stringent than the one obtained before (equation 
(3.8)) by considering only the weak and electromagnetic interactions. Moreover, 
provided that the corrections to (4.4) from higher-order contributions to the p 
functions are sufficiently small, the model of 0 3.2 is ruled out as a suitable unifying 
group. 

From (4.1), given C2, g:(K) can be calculated. Taking C2 = 4/3 (the model of § 3.4) 
and K = 10 GeV gives 

gi/477 ~ 0 . 2 8 .  (4.5) 

This value of gi/41r is in accord with current ideas on the quark-gluon theory of strong 
interactions (Politzer 1974a, b). Similar estimates can also be made for g: and g:. One 
obtains 

g:/477 = 1/80 (4.6) 

gi/41r= 1/31. (4.7) 

Equations (4.3, (4.6) and (4.7) show clearly the disparity in strengths of the various 
couplings (at present energies) which arises due to renormalization effects. 

An interesting consequence of the constraint (4.4) is that the effective electric 
coupling decreases slightly as K increases. The actual decrease is model dependent. 
Thus, for the model of Q 3.4, the percentage decrease is approximately 0.25O/0 as K 

increases by an order of magnitude. An experimental observation of such an effect 
would provide a strong argument in favour of embedding electromagnetism in a 
non-Abelian gauge theory. We stress, however, that the non-Abelian nature of the 
theory was not enough to lead to this conclusion. The constraint on C2, provided by 
(4.4), plays an essential role. 
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5. Discussion 

The conjecture that gravitation provides a universal cut-off for strong, weak and 
electromagnetic interactions is very appealing. We have shown that, when used in 
conjunction with the renormalization group method, it enables one to evaluate renor- 
malization effects in gauge theories. Thus, one can see explicitly why strong interac- 
tions are strong in unified theories of strong, weak and electromagnetic interactions. 
Moreover, it imposes a constraint on any realistic unified model. For models satisfying 
this constraint one predicts a decrease of the effective electric coupling as the momen- 
tum scale increases. The renormalized value of the Salam-Weinberg mixing angle is 
also calculable and can be used, along with other model-dependent quantities, to single 
out the physically relevant model. Finally, we remark that according to the ideas 
discussed here, unified models of strong and non-strong interactions contain 
superheavy bosons with masses of the order of the gravitational cut-offt. This follows 
since the unification of the forces is expected to set in when symmetry breaking effects 
can be neglected. 
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